IQ-motif proteins influence intracellular free Ca2+ in hippocampal neurons through their interactions with calmodulin.

نویسندگان

  • Yoshihisa Kubota
  • John A Putkey
  • Harel Z Shouval
  • M Neal Waxham
چکیده

Calmodulin (CaM) is most recognized for its role in activating Ca(2+)-CaM-dependent enzymes following increased intracellular Ca(2+). However, CaM's high intracellular concentration indicates CaM has the potential to play a significant role as a Ca(2+) buffer. Neurogranin (Ng) is a small neuronal IQ-motif-containing protein that accelerates Ca(2+) dissociation from CaM. In cells that contain high concentrations of both Ng and CaM, like CA1 pyramidal neurons, we hypothesize that the accelerated Ca(2+) dissociation from CaM by Ng decreases the buffering capacity of CaM and thereby shapes the transient dynamics of intracellular free Ca(2+). We examined this hypothesis using a mathematical model constructed on the known biochemistry of Ng and confirmed the simulation results with Ca(2+) imaging data in the literature. In a single-compartment model that contains no Ca(2+) extrusion mechanism, Ng increased the steady-state free Ca(2+). However, in the presence of a Ca(2+) extrusion mechanism, Ng accelerated the decay rate of free Ca(2+) through its ability to increase the Ca(2+) dissociation from CaM, which in turn becomes subject to Ca(2+) extrusion. Interestingly, PEP-19, another neuronal IQ-motif protein that accelerates both Ca(2+) association and dissociation from CaM, appears to have the opposite impact than that of Ng on free Ca(2+). As such, Ng may regulate, in addition to the Ca(2+)-CaM-dependent process, Ca(2+)-sensitive enzymes by influencing the buffering capacity of CaM and subsequently free Ca(2+) levels. We examined the relative impact of these Ng-induced effects in the induction of synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IQ-Motif Proteins Influence Intracellular Free Ca in Hippocampal Neurons Through Their Interactions With Calmodulin

Kubota Y, Putkey JA, Shouval HZ, Waxham MN. IQ-motif proteins influence intracellular free Ca in hippocampal neurons through their interactions with calmodulin. J Neurophysiol 99: 264–276, 2008. First published October 24, 2007; doi:10.1152/jn.00876.2007. Calmodulin (CaM) is most recognized for its role in activating Ca –CaMdependent enzymes following increased intracellular Ca . However, CaM’s...

متن کامل

Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin

The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide e...

متن کامل

Biophysical analysis of the dynamics of calmodulin interactions with neurogranin and Ca2+/calmodulin‐dependent kinase II

Calmodulin (CaM) functions depend on interactions with CaM-binding proteins, regulated by Ca2+. Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM-binding region of Ca2+/calmodulin-dependent kinase II (CaMKII290-309 ) have been studied using biophysical methods. These proteins hav...

متن کامل

The interaction of IQGAPs with calmodulin-like proteins.

Since their identification over 15 years ago, the IQGAP (IQ-motif-containing GTPase-activating protein) family of proteins have been implicated in a wide range of cellular processes, including cytoskeletal reorganization, cell-cell adhesion, cytokinesis and apoptosis. These processes rely on protein-protein interactions, and understanding these (and how they influence one another) is critical i...

متن کامل

Lead exposure impairs the NMDA agonist-induced NOS expression in pyramidal hippocampal cells

Chronic exposure to lead (Pb) affects neural functions in central nervous system (CNS) particularly the learning and memory. On the other hand, alteration of calcium level in the CNS results in activation of NOS. It has been shown that lead enters the neurons through calcium channels and displaces Ca2+ from calcium binding proteins such as calmodulin and troponin C thereby affecting calcium-med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2008